

SISTEMI ELETTRONICI PER L'AUTOMAZIONE E L'INDUSTRIA (SEAI)

A.A. 2023-2024 LE LOGICHE A RELE'

Logiche booleane: realizzazioni

Se F(ingressi)=vero allora "agisci", con F = funzione logica booleana Accendi la luce se c'è buio o se il deviatore è su 3

Logica di realizzazione A (logica "set-reset")

Se sensore luce=1 e deviatore≠3 ("deviatore=3"=0) allora spegni luce Se sensore luce=0 o deviatore=3 ("deviatore=3"=1) allora accendi luce

Logica di realizzazione B (logica "assegnazione")

Luce = !(sensore luce) + "deviatore=3"

Logica "a interruttori"

Interruttore aperto (non passa corrente)
Interruttore chiuso (passa corrente)

Se attraverso la rete di interruttori, che implementa la funzione F,

arriva corrente all'uscita allora l'uscita è 1 altrimenti è 0

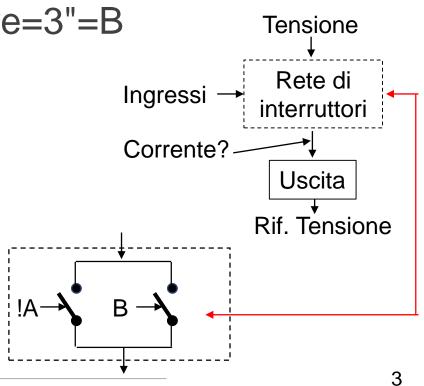
Tensione

Logiche booleane: logiche a interruttori

Se F(ingressi)=vero allora "agisci", con F = funzione logica booleana Accendi la luce se c'è buio o se il deviatore è su 3

Logica di realizzazione B (logica "assegnazione")

Luce = !(sensore luce) + "deviatore=3" = F(sensore luce, "deviatore=3")


Ingressi booleani: "sensore luce"=A, "deviatore=3"=B

Uscita booleana: "luce"=C

Funzione C=F(A,B)=!A+B

Logica "a interruttori"

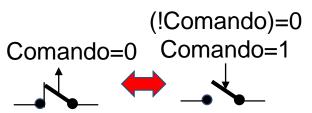
Fè un OR e quindi all'uscita può arrivare corrente da due rami: !A oppure B Interruttore sx: fa passare corrente se !A=1 Interruttore dx: fa passare corrente se B=1

Logiche booleane: tipi di interruttori

Interruttore normalmente aperto (NA)

L'azione (Comando=1) chiude l'interruttore Senza azione (Comando=0) l'interruttore è aperto

Interruttore normalmente chiuso (NC)


L'azione (Comando=1) apre l'interruttore Senza azione (Comando=0) l'interruttore è chiuso

- L'interruttore NC si usa per comandi negati Si potrebbe sempre usare gli NA con !Comando
- Gli schemi a interruttori usano NA e NC a riposo

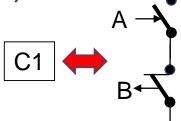
Gli schemi di reti di interruttori indicano gli interruttori NA e NC in mancanza di azione (Comando = 0)

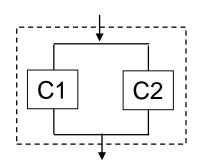
- AND <-> serie degli interruttori; OR <-> parallelo degli interruttori

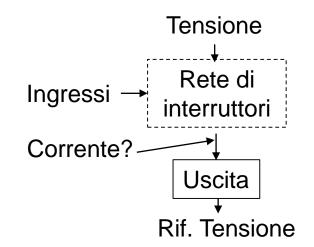
Logiche booleane: reti di interruttori

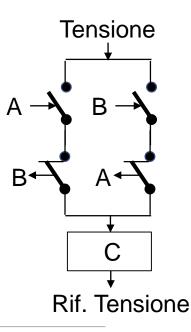
Problema descritto "a parole" => soluzione a rete di interruttori

1. Tabella della verità

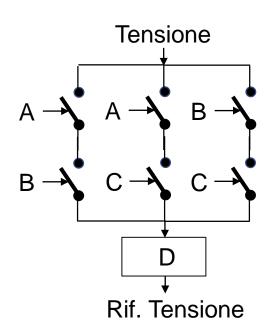

- 2. Funzione logica booleana
- 3. Rete di interruttori i cui comandi sono i segnali dai sensori
- 4. Polarizzazione della rete e connessione dell'uscita all'attuatore

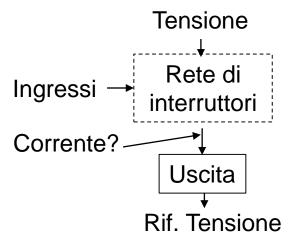



Dati due sensori di pioggia A e B, accendere una lampada C quando assumono valore diverso


(logic Friday) => C = A&!B + !A&B

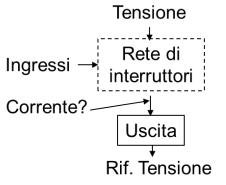
- C = C1 + C2 (parallelo)
- C1 = A&!B (serie)
- C2 = !A&B (serie)

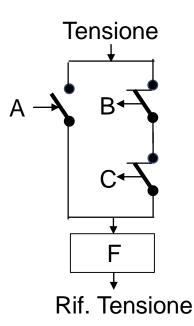




Dati 3 sensori A, B e C, fornire il valore D più probabile (di maggioranza) e accendere una lampada E se i tre interruttori non sono concordi

(logic Friday)
$$\Rightarrow$$
 D = A&B + A&C + BC


- C = C1 + C2 + C3 (parallelo)
- C1 = A&B (serie)
- C2 = A&C (serie)
- C3 = B&C (serie)

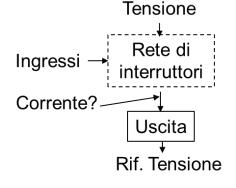


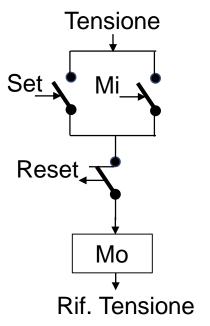
Disattivare la barriera di protezione F che impedisce il passaggio degli operatori se l'impianto A è fermo e c'è una richiesta B di manutenzione o se c'è un allarme C (logic Friday) => !F = !A&(B+C) (F = A+(!B&!C))

- F = A + (!B&!C) = A + C1 (parallelo)
- C1 = !B&!C (serie)

Far partire un motore M se si pigia il pulsante SET e arrestarlo se si pigia il pulsante RESET

Set	Reset	M
0	0	?
0	1	0
1	0	1
1	1	0




Se Set=0 e Reset=0 il motore M continua a fare quello che faceva prima, quindi M è ingresso e uscita

Set	Reset	M(in)	M(out)
0	0	0	0
0	0	1	1
0	1	X	0
1	0	Χ	1
1	1	Χ	0

- Mo = C1&!Reset (serie)
- C1 = Set + Mi (parallelo)

Accendere una lampada L se si pigia il pulsante SET e

spegnerla se si pigia il pulsante RESET (set prevalente)

Set	Reset	L
0	0	?
0	1	0
1	0	1
1	1	1

Se Set=0 e Reset=0 la lampada L continua a fare quello che faceva prima, quindi L è ingresso e uscita

Set	Reset	L(in)	L(out)
0	0	0	0
0	0	1	1
0	1	Χ	0
1	0	Χ	1
1	1	Χ	1

Costruzione della rete di interruttori

- Lo = Set + C1 (parallelo)
- C1 = Li&!Reset (serie)

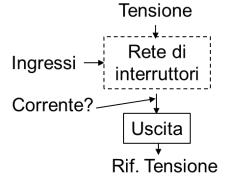
Tensione Set Li Reset Lo Rif. Tensione

Inaressi

Corrente?

Tensione

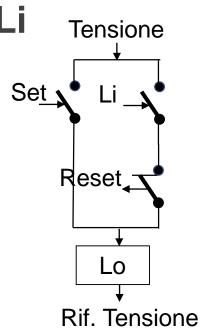
Rete d

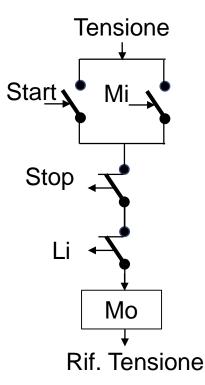

Uscita

Rif. Tensione

Abbiamo realizzato una memoria Set-Reset (Set prevalente)

Accendere una lampada L se si pigia il pulsante SET e spegnerla se si pigia il pulsante RESET (set prevalente) Avviare un motore M se si pigia Start e fermarlo se si pigia Stop o se la lampada L è accesa




(logic Friday) => Lo = Set+(Li&!Reset)

Mo = (Start+Mi)&!Ston&!

Mo = (Start+Mi)&!Stop&!Li

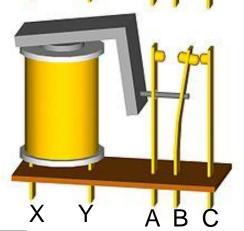
- Lo = Set + C1 (parallelo)
- C1 = Mi&!Reset (serie)
- Mo = C2&C3 (serie)
- C2 = Start + Mi (parallelo)
- C3 = !Stop&!Li (serie)

Logiche booleane: reti di interruttori, il Relè

Grazie alle reti di interruttori è possibile realizzare funzioni logiche booleane anche complesse e con memoria

Gli interruttori sono a comando manuale, esistono interruttori a comando elettrico?

⇒ I relè (relay)

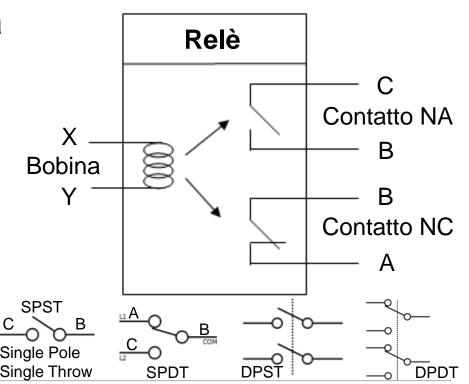

https://www.youtube.com/watch?v=s3nLLq8Zu94 https://www.mcurie.edu.it/files/gargano.pierangelo/SISTEMI/RIASSUNTO_RELE_E_SICUREZZA_OK.pdf

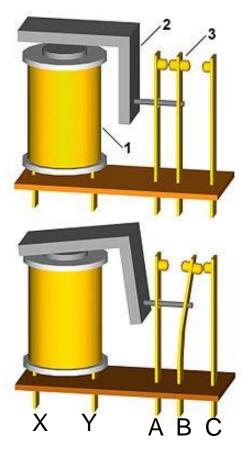
Se nella bobina 1 non viene fatto passare corrente (la bobina non è eccitata) allora il terminale mobile 3 è nella posizione di riposo e si ha:

- Contatto AB chiuso e contatto BC aperto (AB è NC, BC è NA)

Se nella bobina 1 viene fatta passare corrente (entra in X e esce da Y) il materiale ferromagnetico sul quale è avvolta si magnetizza spostando l'ancora 2 che sposta il terminale mobile 3

- Contatto AB aperto e contatto BC chiuso

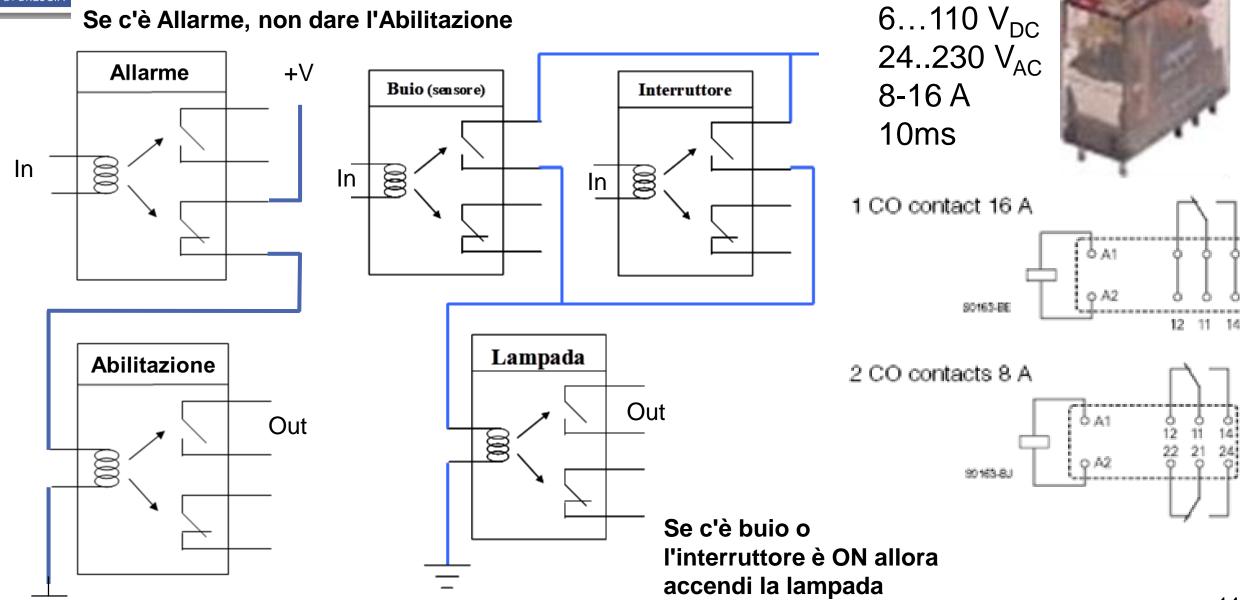


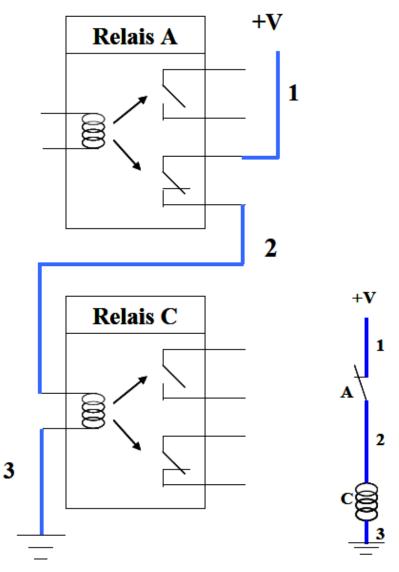

Logiche booleane: il Relè

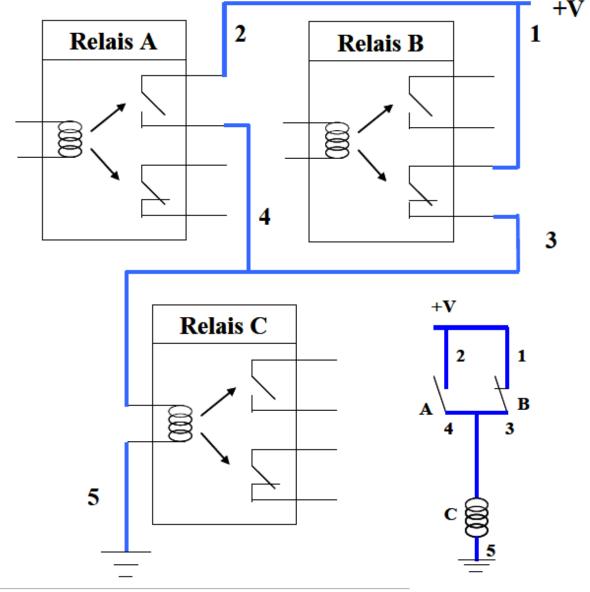
I Relè sono interruttori comandati facendo o non facendo passare corrente nella bobina

 $I_{bobina} = 0 \Rightarrow I$ contatti NA sono aperti e i contatti NC sono chiusi $I_{bobina} \neq 0 \Rightarrow I$ contatti NA sono chiusi e i contatti NC sono aperto

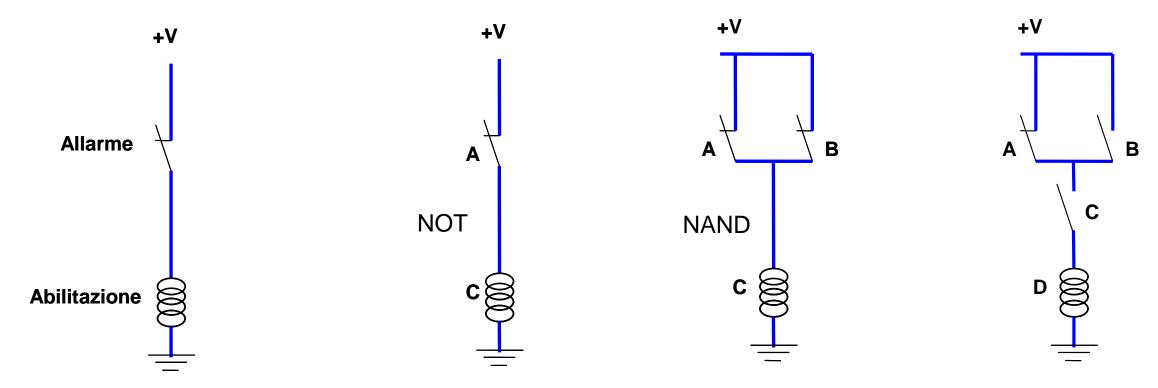
- Amplificatori di potenza (bobina a 10-100mA, contatto a 1-10A)
- Moltiplicatori di contatti
- Utilizzati da personale non altamente qualificato
- Isolatori naturali
- Lenti (tempi: 10μs-10ms)
- Semplici funzioni logiche
- Ingombranti, dissipativi




Logiche booleane: il Relè


Se c'è Allarme, non dare l'Abilitazione

il Relè: programmazione mediante cablaggio



il Relè: reti di interruttori

Gli schemi a relais sono un "linguaggio" dal semplice costrutto: If "INPUT" then Out=1 else Out=0

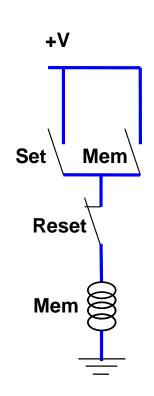
(Out è una bobina, INPUT è una rete di interruttori (AND -serie-, OR-parallelo-, NOT-contatto NC-)

Come interpreto uno schema a relè? Dallo schema alla funzione booleana

Approccio "bottom-up": parto dalla bobina e costruisco (basso verso alto, sinistra verso destra)

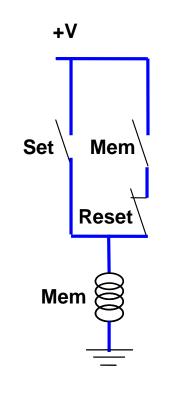
l'equazione risolvendo i costrutti serie e parallelo

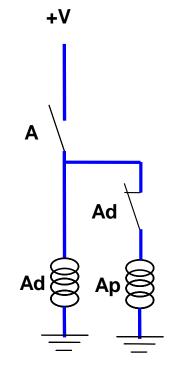
$$D = () &($$


$$D = (C) & (C)$$

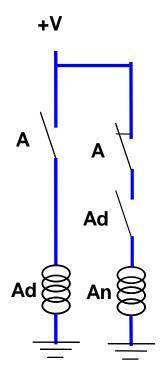
$$C) & ((!A) + (B)) =$$

il Relè: reti di interruttori, memorie


Memoria Set-Reset Reset prevalente


Ap

An

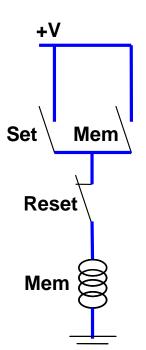

Memoria Set-Reset Set prevalente

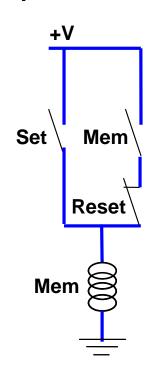
Ap = Rilevatore di fronte positivo

An = Rilevatore di fronte negativo

NOTA: Ad è in ritardo rispetto ad A $(Ad(t)=A(t+\tau)$

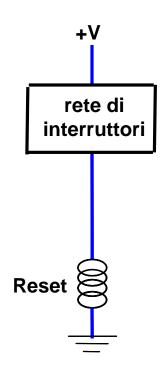
Ad = valore "vecchio" di A


NOTA: Ap è limitativo rispetto ad A, perché non basta che A=1 ma deve essere (A=1)&(Ad=0)


il Relè: logiche set-reset

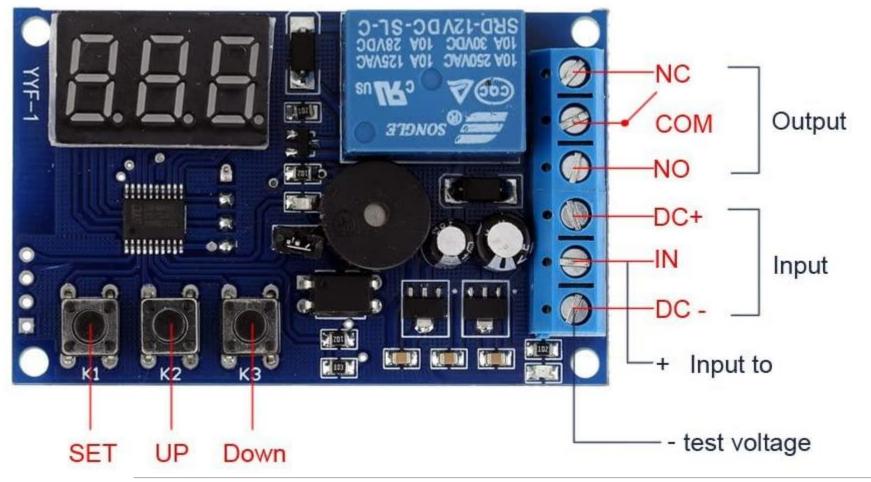
Per ogni uscita mi chiedo: cosa la porta a 1? Cosa la porta a 0?

Memoria Set-Reset Reset prevalente


Memoria Set-Reset Set prevalente

Rete di interruttori per la realizzazione del Set

Rete di interruttori per la realizzazione del Reset

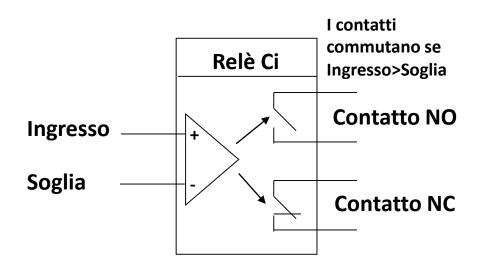

Nota: si sceglie la funzione prevalente (set o reset) in base a logiche di sicurezza

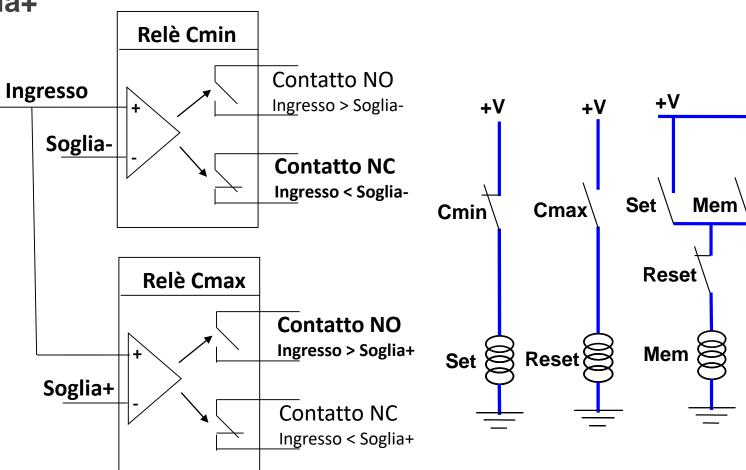
Nota: la rete della funzione prevalente è in genere un OR, la rete della funzione non prevalente è in genere un AND (funzione limitativa)

il Relè: monitoraggio variabile analogica

Imposto con i tasti la soglia min (Sm) e la soglia max (SM) Se Sm<IN<SM allora NO aperto e NC chiuso altrimenti commutazione

NO chiuso NC aperto

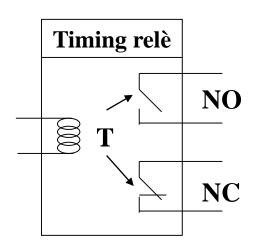



il Relè: monitoraggio variabile analogica

Grazie a questi relè è possibile realizzare i controlli ON-OFF

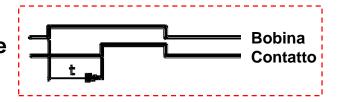
Set(/Reset) se Ingresso < Soglia-Reset(/Set) se Ingresso > Soglia+ Dove Soglia- < Soglia+

(Se Soglia-<Ingresso<Soglia+ non fare niente)

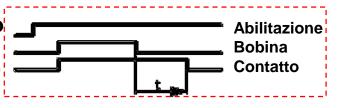


I Relè temporizzatori (timing relè) sono interruttori comandati facendo o non facendo passare corrente nella bobina e applicando ritardi a fronti positivi o negativi di tali segnali di corrente

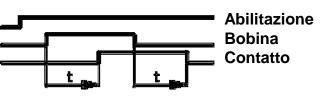
Vedi "temporizzatori" in http://www.moeller.net/binary/schabu/wiring_man_it.pdf



Esistono tanti relè temporizzatori, ciascuno con una sua funzione


Ritardo all'inserzione (Funzione 11)

In corrispondenza del fronte di salita del segnale di ingresso (bobina), il temporizzatore inizia a contare e, passato il tempo T, attiva il contatto di uscita. Il contatto di uscita si disattiva quando l'ingresso (bobina) va a zero

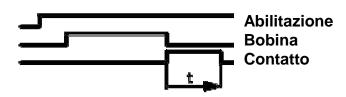

Ritardo alla disinserzione (Funzione 12)

In corrispondenza del fronte di salita del segnale di ingresso (bobina) si attiva il contatto di uscita; in corrispondenza del fronte di discesa di bobina, il temporizzatore inizia a contare e, passato il tempo T, disattiva il contatto di uscita. Si noti che l'uscita "estende" l'attività del segnale di ingresso e quindi esiste un ulteriore ingresso di abilitazione che permette tale estensione (Nel caso di Funzione 11 l'uscita "limita" l'attività del segnale)

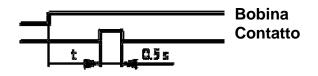
Ritardo (Funzione 16)

In corrispondenza del fronte di salita del segnale di ingresso (bobina), il temporizzatore inizia a contare e, passato il tempo T, attiva il contatto di uscita. In corrispondenza del fronte di discesa di bobina, il temporizzatore re-inizia a contare e, passato il tempo T, disattiva il contatto di uscita. Si noti che anche in questo caso l'uscita "estende" l'attività del segnale di ingresso e quindi esiste un ulteriore ingresso di abilitazione che permette tale estensione

Esistono tanti relè temporizzatori, ciascuno con una sua funzione


Passante all'inserzione (Funzione 21)

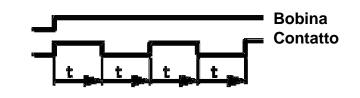
In corrispondenza del fronte di salita del segnale di ingresso (bobina), il contatto di uscita si attiva e il temporizzatore inizia a contare e, passato il tempo T, disattiva il contatto di uscita.


Passante alla disinserzione (Funzione 22)

In corrispondenza del fronte di discesa del segnale di ingresso (bobina), il contatto di uscita si attiva e il temporizzatore inizia a contare e, passato il tempo T, disattiva il contatto di uscita. Essendo funzione "estensiva", è presente anche l'ingresso di abilitazione

Generazione impulsi fissi (Funzione 81)

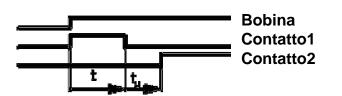
In corrispondenza del fronte di salita del segnale di ingresso (bobina), il temporizzatore inizia a contare e, passato il tempo T, attiva il contatto di uscita che si disattiva dopo un tempo fisso.



Esistono tanti relè temporizzatori, ciascuno con una sua funzione

Lampeggiante, inizio (Funzione 42)

In corrispondenza del fronte di salita del segnale di ingresso (bobina), il contatto di uscita si attiva e il temporizzatore inizia a contare e, passato il tempo T, commuta il contatto di uscita e ricomincia a contare il tempo per poi continuare a commutare. Il lampeggio si arresta se la bobina va a zero


Lampeggiante, Pausa (Funzione 43)

In corrispondenza del fronte di salita del segnale di ingresso (bobina), il temporizzatore inizia a contare e, passato il tempo T, commuta il contatto di uscita e ricomincia a contare il tempo per poi continuare a commutare. Il lampeggio si arresta se la bobina va a zero.

Avviamento stella-triangolo (Funzione 51)

In corrispondenza del fronte di salita del segnale di ingresso (bobina), il contatto1 di uscita (abilitazione "stella") si attiva e il temporizzatore inizia a contare e, passato il tempo T, disattiva il contatto1 e inizia a contare il tempo Tu, pari tipicamente a 50ms, quindi attiva il contatto2 (abilitazione "triangolo"). Entrambi i contatti si disattivano se la bobina va a zero.

il Relè: osservazioni

Il relè permette di realizzare reti di interruttori (logiche a contatti)

• Grazie ai relè comparatori e ai relè temporizzatori è possibile realizzare sistemi di automazione con controlli ON-OFF e sequenze temporizzate

I sistemi di automazione a relè sono stati sostituiti perchè

- I relè sono molto ingombranti (1 bit ⇔ 2 cm³) e lenti (1 bit ⇔ ms)
- I relè consumano molta energia elettrica, circa 10mA per bobina, 1bit⇔0,1W
- Modifiche alle "reti di interruttore a relè" o logiche a contatti o logiche cablate implicano molto lavoro (scollegare e ricollegare bobine e contatti)
- · Sono inadeguati a trattare informazioni diverse dai bit

I relè sono ancora presenti e si affiancano ai controllori computerizzati perché

- I relè permettono correnti elevate (contatti che supportano >100mA)
- I relè hanno isolamento elettrico tra bobina e contatti (protezione)
- I relè sono molto robusti (-40°C...70°C, ottima resistenza agli urti,...)

il Relè: osservazioni

Controllori Logici Programmabili (PLC)

Relè

Armadi a logica cablata

