
Copyright © 2005 Altera Corporation

Introduction to VHDL

Copyright © 2005 Altera Corporation
2

Objectives
Theory:

 Understand Basic Constructs of VHDL
 Understand Modeling Structures of VHDL

Lab:
 Obtain an overview of Altera FPGA technology
 Create a New Quartus II Project
 Compile a Design into an FPGA
 Analyze the Design Environment

Copyright © 2005 Altera Corporation
3

Course Outline
 Introduction to Altera Devices & Altera Design Software
 VHDL Basics

 Overview of Language
 Design Units

 Entity
 Architecture
 Configurations
 Packages (Libraries)

 Architecture Modeling Fundamentals
 Signals
 Processes

Copyright © 2005 Altera Corporation
4

Course Outline
 Understanding VHDL and Logic Synthesis

 Process Statement
 Inferring Logic

 Model Application
 State Machine Coding

 Hierarchical Designing
 Overview
 Structural Modeling
 Application of Library of Parameterized Modules

(LPMs)

Copyright © 2005 Altera Corporation

Design FlowDesign Flow

5

Copyright © 2005 Altera Corporation

PLD Design FlowPLD Design Flow

Model Development
using

HDL or Schematic capture

Synthesis

Implementation
Translate, Place and route (Fitting)

Programming

Behavioral
Simulation

Functional
Simulation

Post place
and route
Simulation

(verification)

HDL model

Netlist
(Equations)

Map File

6

Copyright © 2005 Altera Corporation

PLD Design Flow (cont)PLD Design Flow (cont)
 Model Development

 Logic design problems can be expressed in the form of
graphical-based logic circuits (schematic) or text-based
programs (hardware description language, HDL)

 The HDL one is more popular since the input method is less
tedious

Schematic Editor

HDL Editor

7

Copyright © 2005 Altera Corporation

PLD Design Flow (cont)PLD Design Flow (cont)
 Behavioral Simulation

 The HDL model can be simulated before it is really mapped to
the hardware constructs of the target FPGA

 The purpose of this behavioral simulation is usually to establish
functional correctness

 It is usually much faster than the more detailed simulation (with
timing consideration) after synthesis

 Testbench waveforms are
generated to test the
designed HDL model to
verify its outputs

testbench waveforms
designed by the programmer
to test the HDL model

8

Copyright © 2005 Altera Corporation

PLD Design Flow (cont)PLD Design Flow (cont)

9

 Synthesis: logic synthesis is a process by which an abstract form of
desired circuit behavior (HDL model in this case) is turned into a
design implementation in terms of logic gates

 For FPGA, a netlist with format following an industrial standard will
result
 A netlist is just a simple text description of the logic gates and

their connections used in a design
 For CPLD, an ensemble of logic equations will result
 Another Functional Simulation can be carried out after the

synthesis process
 Also mainly for verifying the functionality of the logic design
 But now some timing information can be incorporated since the

usage of logic gates in the design is known
 However, the timing is not completely accurate since some exact

details of the FPGA still are not known at this stage

Copyright © 2005 Altera Corporation

PLD Design Flow (cont)PLD Design Flow (cont)
 Implementation

 Translate is the first step in the implementation process
 The Translate process merges all of the input netlists and design

constraint information (such as the pin assignment) and outputs a
device (manufacturer) specific file

FPGA

seg(0)
seg(1)

SW0 seg(2)
SW1 seg(3)
SW2 seg(4)
SW3 seg(5)

seg(6)

digit(0)
digit(1)
digit(2)
digit(3)

Your design

p110

p111
p114

p109

p113

p138
p134

p122

p139
p136

p120

p119

p108
p115

p126

pin assignment, one of the user constraints

 For FPGA, the place and route
process is then carried out
 Should place the logic gates to

different LEs (CLBs)
 Then route the interconnections

between them
 For CPLD, fitting of the project to

available hardware resource is
performed

10

Copyright © 2005 Altera Corporation

PLD Design Flow (cont)PLD Design Flow (cont)
 Post place and route (fitting) simulation (verification)

 The design is close to final. All interconnections and the LEs
(CLBs) used in the design have been confirmed. Hence the
actual timing can be determined

 A post place and route (fitting) simulation is often carried out at
this moment to verify the design as a whole

 Programming
 The implementation process will result in a vendor dependent

file, which keeps the binary bitstream that can be sent to the
FPGA for configuration – using PROM or download from
computer

11

Copyright © 2005 Altera Corporation

Introduction to Altera
Devices

& Design Software

Introduction to Altera
Devices

& Design Software

Copyright © 2005 Altera Corporation
13

Software & Development ToolsSoftware & Development Tools

Quartus II
 Stratix II, Cyclone II, Cyclone III, Stratix

GX, MAX II, Stratix HardCopy, Stratix,
Cyclone, APEX II, APEX 20K/E/C,
Excalibur, & Mercury Devices

 FLEX 10K/A/E, ACEX 1K, FLEX 6000,
MAX 7000S/AE/B, MAX 3000A Devices

Quartus II Web Edition
 Free Version
 Not All Features & Devices Included

MAX+PLUS® II
 All FLEX, ACEX, & MAX Devices

Copyright © 2005 Altera Corporation

VHDL
Basics

Copyright © 2005 Altera Corporation
15

VHDL

VHSIC (Very High Speed Integrated Circuit)

Hardware

Description

Language

Copyright © 2005 Altera Corporation
16

What is VHDL?

 IEEE Industry Standard Hardware Description
Language

 High-level Description Language for Both Simulation
& Synthesis

Copyright © 2005 Altera Corporation
17

VHDL History
 1980 - U.S. Department of Defense (DOD)

Funded a Project to Create a Standard Hardware
Description Language Under the Very High
Speed Integrated Circuit (VHSIC) Program

 1987 - the Institute of Electrical and Electronics
Engineers (IEEE) Ratified As IEEE Standard
1076

 1993 - the VHDL Language Was Revised and
Updated to IEEE 1076 ‘93

Copyright © 2005 Altera Corporation
18

Terminology
 HDL - Hardware Description Language Is a

Software Programming Language That Is Used
to Model a Piece of Hardware

 Behavior Modeling - A Component Is Described
by Its Input/Output Response

 Structural Modeling - A Component Is Described
by Interconnecting Lower-level
Components/Primitives

Copyright © 2005 Altera Corporation
19

Behavior Modeling

input1, .., inputn
output1, .., outputn

IF shift_left THEN
FOR j IN high DOWNTO low LOOP

shft(j) := shft(j-1);
END LOOP;

output1 <= shft AFTER 5ns;

 Only the Functionality of the Circuit, No Structure
 No Specific Hardware Intent
 For the Purpose of Synthesis, As Well As Simulation

Left Bit Shifter

Copyright © 2005 Altera Corporation
20

Structural Modeling

input1

inputn

output1

outputn

Higher-level Component

Lower-level
Component1

Lower-level
Component1

 Functionality and Structure of the Circuit
 Call Out the Specific Hardware
 For the Purpose of Synthesis

Copyright © 2005 Altera Corporation
21

More Terminology
Register Transfer Level (RTL) - A Type of

Behavioral Modeling, for the Purpose of
Synthesis
 An RTL description describes a circuit’ s registers and the

sequence of transfers between these registers but does not
describe the hardware used to carry out these operations

Synthesis - Translating HDL to a Circuit and
Then Optimizing the Represented Circuit
 RTL Synthesis - The Process of Translating a RTL Model of

Hardware Into an Optimized Technology Specific Gate
Level Implementation

Copyright © 2005 Altera Corporation
22

VHDL Basics

 Two Sets of Constructs:
 Synthesis
 Simulation

 The VHDL Language Is Made up of Reserved Keywords
 The Language Is, for the Most Part, Not Case Sensitive
 VHDL Statements Are Terminated With a ;
 VHDL Is White Space Insensitive. Used for Readability.
 Comments in VHDL Begin With “--” to Eol
 VHDL Models Can Be Written:

 Behavioral
 Structural
 Mixed

Copyright © 2005 Altera Corporation

VHDL
Design Units

Copyright © 2005 Altera Corporation
24

VHDL Basics
VHDL Design Units

 Entity
Used to Define External View of a Model.

I.E. Symbol
 Architecture
Used to Define the Function of the Model.

I.E. Schematic

Copyright © 2005 Altera Corporation
25

VHDL Basics
VHDL Design Units (cont.)

 Package
Collection of Information That Can Be

Referenced by VHDL Models. I.E. Library
Consist of Two Parts Package Declaration

and Package Body

Copyright © 2005 Altera Corporation
26

Entity Declaration
ENTITY <entity_name> IS

Generic Declarations
Port Declarations

END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

 Analogy : Symbol
 <Entity_name> Can Be Any Alpha/Numerical Name

 Note: MAX+PLUS II Requires That the <Entity_name> and
<File_name> Be the Same; Not Necessary in Quartus II

 Generic Declarations
 Used to Pass Information Into a Model
 Quartus II & MAX+PLUS II Place Some Restriction on the Use of

Generics

 Port Declarations
 Used to Describe the Inputs and Outputs i.e. Pins

Copyright © 2005 Altera Corporation
27

Entity : Generic Declaration

 New Values Can Be Passed During
Compilation

 During Simulation/Synthesis a Generic Is
Read Only

ENTITY <entity_name> IS
Generic (constant tplh , tphl : time := 5 ns;

-- Note constant is assumed and is not required
tphz, tplz : time := 3 ns;
default_value : integer := 1;
cnt_dir : string := “up”

);
Port Declarations

END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

Copyright © 2005 Altera Corporation
28

Entity : Port Declarations

 Structure : <Class> Object_name : <Mode>
<Type> ;

 <Class> : What Can Be Done to an Object
 Object_name : Identifier
 <Mode> : Directional

 in (Input) Out (Output)
 Inout (Bidirectional) Buffer (Output W/ Internal Feedback)

 <Type> : What Can Be Contained in the Object

ENTITY <entity_name> IS
Generic Declarations
Port (signal clk : in bit;

--Note: signal is assumed and is not required
q : out bit

);
END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

Copyright © 2005 Altera Corporation
29

Architecture
 Analogy : Schematic
 Describes the Functionality and Timing of a

Model
Must Be Associated With an ENTITY
 ENTITY Can Have Multiple Architectures
 Architecture Statements Execute Concurrently

(Processes)

Copyright © 2005 Altera Corporation
30

Architecture (cont.)
 Architecture Styles

 Behavioral : How Designs Operate
RTL : Designs Are Described in Terms of Registers
Functional : No Timing

 Structural : Netlist
Gate/Component Level

 Hybrid : Mixture of the Above

Copyright © 2005 Altera Corporation
31

Architecture
ARCHITECTURE <Identifier> OF <Entity_identifier> IS
--Architecture Declaration Section (List Does Not Include All)

SIGNAL Temp : Integer := 1; -- Signal Declarations :=1 Is Default Value Optional
CONSTANT Load : Boolean := True; --Constant Declarations
TYPE States IS (S1, S2, S3, S4) ; --Type Declarations
--Component Declarations Discussed Later
--Subtype Declarations
--Attribute Declarations
--Attribute Specifications
--Subprogram Declarations
--Subprogram Body

BEGIN
Process Statements
Concurrent Procedural Calls
Concurrent Signal Assignment
Component Instantiation Statements
Generate Statements

END <Architecture Identifier> ; (1076-1987 Version)
End ARCHITECTURE; (1076-1993 Version)

Copyright © 2005 Altera Corporation
32

VHDL - Basic Modeling Structure

ENTITY entity_name IS
generics
port declarations

END entity_name;

ARCHITECTURE arch_name OF entity_name IS
enumerated data types
internal signal declarations
component declarations

BEGIN
signal assignment statements
process statements
component instantiations

END arch_name;

Copyright © 2005 Altera Corporation
33

VHDL : Entity - Architecture
input1

inputn

output1

outputn
Symbol

Entity

CLRN
ENA

D Q

clk

clr

mux_out
a

d
sel

2

b
c

Schematic

Architecture

Copyright © 2005 Altera Corporation
34

Putting It All Together

ARCHITECTURE

a

b
sel

x

a

b
sel

y

a

b
sel

z

a

b

sel

x

y

z

ENTITY
ENTITY cmpl_sig IS
PORT (a, b, sel : IN bit;

x, y, z : OUT bit);
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);

-- conditional signal assignment
y <= a WHEN sel='0' ELSE

b;
-- selected signal assignment

WITH sel SELECT
z <= a WHEN '0',

b WHEN '1',
'0' WHEN OTHERS;

END logic;

Copyright © 2005 Altera Corporation
35

Packages
 Packages Are a Convenient Way of Storing and Using

Information Throughout an Entire Model
 Packages Consist Of:

 Package Declaration (Required)
Type Declarations
Subprograms Declarations

 Package Body (Optional)
Subprogram Definitions

 VHDL Has Two Built-in Packages
 Standard
 Textio

Copyright © 2005 Altera Corporation
36

Libraries
 Contains a Package or a Collection of Packages
 Resource Libraries

 Standard Package
 IEEE Developed Packages
 Altera Component Packages
 Any Library of Design Units That Are

Referenced in a Design
Working Library

 Library Into Which the Unit Is Being Compiled

Copyright © 2005 Altera Corporation
37

Model Referencing of Library/Package
 All Packages Must Be Compiled
 Implicit Libraries

 Work
 Std
Note: Items in These Packages Do Not Need to Be

Referenced, They Are Implied
 LIBRARY Clause

 Defines the Library Name That Can Be Referenced
 Is a Symbolic Name to Path/Directory
 Defined by the Compiler Tool

 USE Clause
 Specifies the Package and Object in the Library That

You Have Specified in the Library Clause

Copyright © 2005 Altera Corporation
38

Example
 LIBRARY <Name>, <Name> ;

 Name Is Symbolic and
Defined by Compiler Tool

Note: Remember That
WORK and STD Do Not
Need to Be Defined.

 Use
Lib_name.Pack_name.Object;
 All Is a Reserved Word

 Placing the Library/Use Clause
First Will Allow All Following
Design Units to Access It

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY cmpl_sig IS
PORT (a, b, sel : IN std_logic;

x, y, z : OUT std_logic);
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);

-- conditional signal assignment
y <= a WHEN sel='0' ELSE

b;
-- selected signal assignment

WITH sel SELECT
z <= a WHEN '0',

b WHEN '1',
'0' WHEN OTHERS;

END logic;
CONFIGURATION cmpl_sig_conf OF cmpl_sig IS

FOR logic
END FOR;

END cmpl_sig_conf;

Copyright © 2005 Altera Corporation
39

Libraries
Library Std;

 Contains the Following Packages:
Standard (Types: Bit, Boolean, Integer, Real, and

Time; All Operator Functions to Support Types)
Textio (File Operations)

 An Implicit Library (Built-in)
Does Not Need to Be Referenced in VHDL Design

Copyright © 2005 Altera Corporation
40

Types Defined in Standard Package
 Type BIT

 2 Logic Value System (‘0’, ‘1’)
Signal A_temp : Bit;

 Bit_vector Array of Bits
Signal Temp : Bit_vector(3 Downto 0);
Signal Temp : Bit_vector(0 to 3) ;

 Type Boolean
 (False, True)

 Integer
 Positive and Negative Values in Decimal

Signal Int_tmp : Integer; -- 32 Bit Number
Signal Int_tmp1 : Integer Range 0 to 255; --8 Bit Number

 Note: Standard Package Has Other Types

Copyright © 2005 Altera Corporation
41

LibrariesLibraries
Library IEEE;

 Contains the Following Packages:
Std_logic_1164 (Std_logic Types & Related

Functions)
Std_logic_arith (Arithmetic Functions)
Std_logic_signed (Signed Arithmetic Functions)
Std_logic_unsigned (Unsigned Arithmetic

Functions)

Copyright © 2005 Altera Corporation
42

Types Defined in Std_logic_1164 Package
 Type STD_LOGIC

 9 Logic Value System (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’)
 ‘W’, ‘L’, ‘H” Weak Values (Not Supported by Synthesis)
 ‘X’ - Used for Unknown
 ‘Z’ - (Not ‘z’) Used for Tri-state
 ‘-’ Don’t Care

 Resolved Type: Supports Signals With Multiple Drives

 Type STD_ULOGIC
 Same 9 Value System As STD_LOGIC
 Unresolved Type: Does Not Support Multiple Signal Drives;

Error Will Occur

Copyright © 2005 Altera Corporation
43

User-defined Libraries/Packages

 User-defined Packages Can Be in the Same
Directory As the Design
Library Work; --Optional
USE WORK.<Package Name>.All;

Or Can Be in a Different Directory From the
Design

LIBRARY <Any_name>;
Use <Any_name>.<Package_name>.All;

Copyright © 2005 Altera Corporation
44

Architecture
Modeling

Fundamentals

Copyright © 2005 Altera Corporation
45

Section Overview
 Understanding the Concept and Usage of Signals

 Signal Assignments
 Concurrent Signal Assignment Statements
 Signal Delays

 Processes
 Implied
 Explicit

 Understanding the Concept and Usage of Variables
 Sequential Statement

 If-then
 Case

Copyright © 2005 Altera Corporation
46

Using Signals
 Signals Represent Physical Interconnect (Wire) That

Communicate Between Processes (Functions)
 Signals Can Be Declared in Packages, Entity and

Architecture

Functional
Block:
MUX

(signals)

Functional
Block:

REGISTERS
(signals)

process process
signals

signals signals

signals

Copyright © 2005 Altera Corporation
47

Assigning Values to Signals

 All Bits:
Temp <= “10101010”;
Temp <= X”aa” ; (1076-1993)

 Single Bit:
Temp(7) <= ‘1’;

 Bit-slicing:
Temp (7 Downto 4) <= “1010”;

 Single-bit: Single-quote (‘)
Multi-bit: Double-quote (“)

SIGNAL temp : STD_LOGIC_VECTOR (7 downto 0);

Copyright © 2005 Altera Corporation
48

Signal Used As an Interconnect

r

t

g

h

qb

Signal Declaration
Inside Architecture

• r, t, g, h, and qb Are Signals (by Default)
• qa Is a Buried Signal and Needs to Be

Declared

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp IS
PORT(r, t, g, h : IN STD_LOGIC;

qb : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL qa : STD_LOGIC;

BEGIN

qa <= r or t;
qb <= (qa and not(g xor h));

END logic;

qa

Copyright © 2005 Altera Corporation
49

Signal Assignments
 Signal Assignments Are Represented By: <=
 Signal Assignments Have an Implied Process

(Function) That Synthesizes to Hardware

CLRN
ENA

D Q
Signal

Signal Assignment <= Implied Process

Copyright © 2005 Altera Corporation
50

Concurrent Signal Assignments
Three Concurrent Signal Assignments:

Simple Signal Assignment
Conditional Signal Assignment
Selected Signal Assignment

Copyright © 2005 Altera Corporation
51

Simple Signal Assignments
 Format: <signal_name> <= <expression>;

 Example:

r

t

g

h

qb

 VHDL Operators Are Used to Describe the Process

Implied Processes
qa <= r or t ;
qb <= (qa and not(g xor h));

 Parenthesis () Give the
Order of Operation

qa

Copyright © 2005 Altera Corporation
52

VHDL Operators

Operator Type Operator Name/Symbol
and or nand nor

Logical xor xnor(1)

Relational = /= < <= > >=

Addition & Concatenation + - &

Signing + -

Multiplying * / mod rem

Miscellaneous ** abs not
(1) Supported in VHDL ‘93 Only

Copyright © 2005 Altera Corporation
53

VHDL Operators

 VHDL Defines Arithmetic & Boolean Functions Only
for Built-in Data Types (Defined in Standard
Package)
– Arithmetic Operators Such As +, -, <, >, <=, >= Are Defined

Only for INTEGER Type
– Boolean Operators Such As AND, OR, NOT Are Defined

Only for BIT Type

 Recall: VHDL Implicit Library (Built-in)
– Library STD

• Types Defined in the Standard Package:
– Bit, Boolean, Integer

 Note: Items in This Package Do Not Need to Be Referenced,
They Are Implied

Copyright © 2005 Altera Corporation
54

Arithmetic Function

The VHDL Compiler Can
Understand This Operation
Because an Arithmetic
Operation Is Defined for
the Built-in Data Type
Integer

ENTITY opr IS
PORT (a : IN INTEGER RANGE 0 TO 16;

b : IN INTEGER RANGE 0 TO 16;
sum : OUT INTEGER RANGE 0 TO 32);

END opr;

ARCHITECTURE example OF opr IS
BEGIN

sum <= a + b;
END example;

 Note: Remember the Library STD and the Package
Standard Do Not Need to Be Referenced

Copyright © 2005 Altera Corporation
55

Operator Overloading
 How Do You Use Arithmetic & Boolean Functions With

Other Data Types?
 Operator Overloading - Defining Arithmetic &

Boolean Functions With Other Data Types
 Operators Are Overloaded by Defining a Function Whose

Name Is the Same As the Operator Itself
 Because the Operator and Function Name Are the

Same, the Function Name Must Be Enclosed Within
Double Quotes to Distinguish It From the Actual VHDL
Operator

 The Function Is Normally Declared in a Package So
That It Is Globally Visible for Any Design

Copyright © 2005 Altera Corporation
56

Operator Overloading Function/package

 Packages That Define These Operator Overloading
Functions Can Be Found in the LIBRARY IEEE

 For Example, the Package std_logic_unsigned
Defines Some of the Following Functions

package std_logic_unsigned is

function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

Copyright © 2005 Altera Corporation
57

Use of Operator Overloading

Include These Statements
At the Beginning of a
Design File

This Allows Us to Perform
Arithmetic on Non-built-in
Data Types

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

ENTITY overload IS
PORT (a : IN STD_LOGIC_VECTOR (4 downto 0);

b : IN STD_LOGIC_VECTOR (4 downto 0);
sum : OUT STD_LOGIC_VECTOR (5 downto 0));

END overload;

ARCHITECTURE example OF overload IS
BEGIN

sum <= a + b;
END example;

Copyright © 2005 Altera Corporation
58

Conditional Signal Assignments
<signal_name> <= <signal/value> when <condition1> else

<signal/value> when <condition2> else

.

.
<signal/value> when <condition3> else
<signal/value>;

 Format:

 Example:
c

b
selb a

sela

q

Implied Process

q <= a WHEN sela = ‘1’ ELSE
b WHEN selb = ‘1’ ELSE
c;

Copyright © 2005 Altera Corporation
59

Selected Signal Assignments
with <expression> select
<signal_name> <= <signal/value> when <condition1>,

<signal/value> when <condition2>,

.

.
<signal/value> when others;

 Format:

 Example:
a

d
sel

2

b
c

q

Implied Process

WITH sel SELECT
q <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;

Copyright © 2005 Altera Corporation
60

Selected Signal Assignments
All Possible Conditions Must Be

Considered
WHEN OTHERS Clause Evaluates All

Other Possible Conditions That Are Not
Specifically Stated

SEE NEXT SLIDE

Copyright © 2005 Altera Corporation
61

Selected Signal Assignment

• What are the Values for a
STD_LOGIC Data Type

• Answer: {‘0’,’1’,’X’,’Z’}

• Therefore, is the WHEN OTHERS
Clause Necessary?

• Answer: YES

sel Has a STD_LOGIC Data Type

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY cmpl_sig IS
PORT (a, b, sel : IN STD_LOGIC;

z : OUT STD_LOGIC);
END cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
b WHEN '1',

'0' WHEN OTHERS;
END logic;

Copyright © 2005 Altera Corporation
62

VHDL Model - Concurrent Signal Assignments

ARCHITECTURE

a

b
sel

x

a

b
sel

y

a

b
sel

z

a

b

sel

x

y

z

ENTITY

• The Signal Assignments Execute in
Parallel, and Therefore the Order We List
the Statements Should Not Affect the
Outcome

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY cmpl_sig IS
PORT (a, b, sel : IN STD_LOGIC;

x, y, z : OUT STD_LOGIC);
END cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);

-- conditional signal assignment
y <= a WHEN sel='0' ELSE

b;
-- selected signal assignment

WITH sel SELECT
z <= a WHEN '0',

b WHEN '1',
'0' WHEN OTHERS;

END logic;

Copyright © 2005 Altera Corporation
63

Explicit Process Statement
 Process Can Be Thought of

As
 Implied Processes
 Explicit Processes

 Implied Process Consist of
 Concurrent Signal

Assignment Statements
 Component Statements
 Processes’ Sensitivity Is

Read (Right) Side of
Expression

 Explicit Process
 Concurrent Statement
 Consist of Sequential

Statements Only

-- Explicit Process Statement
PROCESS (sensitivity_list)

Constant Declarations
Type Declarations
Variable Declarations

BEGIN
-- Sequential statement #1;
-- ……..
-- Sequential statement #N ;
END PROCESS;

Copyright © 2005 Altera Corporation
64

Execution of Process Statement
 A process is like a circuit

part, which can be
 active (known activated)
 inactive (known as

suspended).

 A process is activated
when a signal in the
sensitivity list changes its
value

 Its statements will be
executed sequentially until
the end of the process

PROCESS(a,b)
BEGIN

-- sequential statements

END PROCESS;

Copyright © 2005 Altera Corporation
65

Multi-Process Statements

Process 1
Sequential
Statement

Process N
Sequential
Statement

SignalsSignals

 An Architecture Can
Have Multiple
Process Statements

 Each Process
Executes in Parallel
With Each Other

 However, Within a
Process, the
Statements Are
Executed
Sequentially

A
R
C
H
I
T
E
C
T
U
R
E

• Describes the Functionality of Design

Copyright © 2005 Altera Corporation
66

VHDL Model - Multi-Process Architecture
• The Process Statements Execute in Parallel and

Therefore, the Order in Which We List the Statements
Should Have No Affect on the Outcome

• Within a Process,
the Statements Are
Executed Sequentially

case_label: PROCESS(a, b, c, d, sel)
BEGIN
CASE sel IS

WHEN "00" =>
z <= a;

WHEN "01" =>
z <= b;

WHEN "10" =>
z <= c;

WHEN "11" =>
z <= d;

WHEN OTHERS =>
z <= '0';

END CASE;
END PROCESS case_label;
END logic;

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY if_case IS
PORT (a, b, c, d : IN STD_LOGIC;

sel : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
y, z : OUT STD_LOGIC);

END if_case;

ARCHITECTURE logic OF if_case IS
BEGIN
if_label: PROCESS(a, b, c, d, sel)

BEGIN
IF sel="00" THEN

y <= a;
ELSIF sel="01" THEN

y <= b;
ELSIF sel="10" THEN

y <= c;
ELSE

y <= d;
END IF;

END PROCESS if_label;
• Signal Assignments Can Also Be

Inside Process Statements

Copyright © 2005 Altera Corporation
67

Initialize Signals

Execute
all

Processes

Advance Time

Update Signals

Execute
sensitive
Processes

Initialization
Phase

Simulation
CycleDelta

VHDL SimulationVHDL Simulation
 Event - A Change in Value: From

0 to 1; Or From X to 1, Etc.
 Simulation Cycle

 Wall Clock Time
 Delta

Process Execution Phase
Signal Update Phase

 When Does a Simulation Cycle
End and a New One Begin?
 When:

– All Processes Execute
– Signals Are Updated

 Signals Get Updated at the End
of the Process

Copyright © 2005 Altera Corporation
68

Equivalent Functions

• c and y Get Executed and Updated in
Parallel at the End of the Process
Within One Simulation Cycle

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp IS
PORT(a, b : IN STD_LOGIC;

y : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL c : STD_LOGIC;

BEGIN

c <= a and b;
y <= c;

END logic;

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a,b : IN STD_LOGIC;

y : OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c : STD_LOGIC;

BEGIN
process1: PROCESS(a, b)

BEGIN
c <= a and b;

END PROCESS process1;
process2: PROCESS(c)

BEGIN
y <= c;

END PROCESS process2;
END logic;

Copyright © 2005 Altera Corporation
69

Equivalent Functions?
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp IS
PORT(a, b : IN STD_LOGIC;

y : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL c : STD_LOGIC;
BEGIN

c <= a and b;

y <= c;

END logic;

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a, b : IN STD_LOGIC;

y: OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c: STD_LOGIC;

BEGIN
PROCESS(a, b)

BEGIN
c <= a and b;
y <= c;
END PROCESS;

END logic;

Copyright © 2005 Altera Corporation
70

Signal Assignment Inside a Process - Delay
• Delta Cycle has 2 Phases:

– Process Execution
– Signal Update

• Delta Cycle is Non-Visible Delay
(Very Small, Close to Zero)

simulation cycle1 simulation cycle2

• y Does Not Get the Newest Value of c Until a
Simulation Cycle Later

(visible delay)(visible delay)

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a, b : IN STD_LOGIC;

y: OUT STD_LOGIC);
END simp_prc;
ARCHITECTURE logic OF simp_prc IS
SIGNAL c: STD_LOGIC;

BEGIN
PROCESS(a, b)

BEGIN
c <= a and b;
y <= c;

END PROCESS;
END logic;

1

a = 1, b = 1

c and y
executed

1

c updated (c=1)

a,b changes
a = 0, b = 1

y updated (y=X)

c and y
executed

c updated (c=0)

a,b changes
a = 1, b = 1

y updated (y=1)

c and y
executed

Copyright © 2005 Altera Corporation
71

2 Processes Vs. 1 Process

1

a = 1, b = 1

c and y
executed

1

c updated (c=1)

a,b changes
a = 0, b = 1

y updated (y=X)

c and y
executed

c updated (c=0)

a,b changes
a = 1, b = 1

y updated (y=1)

c and y
executed

PROCESS(a, b)
BEGIN
c <= a and b;
y <= c;

END PROCESS;

simulation cycle1 simulation cycle2

• y Does Not Get the Newest Value of c Until a
Simulation Cycle Later

(visible delay)(visible delay)

a = 1
b = 1

c
executed

c
updated
(c=1)

y
executed

a,b changes
a = 0
b = 1

c
executed

y updated
(y=1)

c
updated
(c=0)

y
executed

a,b changes
a = 1
b = 1

c
executed

y updated
(y=0)

1 2 21
simulation cycle1 simulation cycle2

• c and y Gets Executed and Updated Within the
Same Simulation Cycle

(visible delay) (visible delay)

process1: PROCESS(a, b)
BEGIN

c <= a and b;
END PROCESS process1;

process2: PROCESS(c)
BEGIN

y <= c;
END PROCESS process2;

Copyright © 2005 Altera Corporation
72

Variable Assignment - No Delay

1

simulation cycle1 simulation cycle2

• Delta Cycle has 2 Phases:
– Process Execution
– Signal Update

• c and y Gets Executed and Updated Within the
Same Simulation Cycle (at the End of the Process)

• Delta Cycle is Non-Visible Delay
(Very Small, Close to Zero)

a = 1, b = 1

y
executed

c
executed

and
updated

(c=1) c executed and
updated (c=0)

a,b changes
a = 0, b = 1

y
executed

y updated
(y=1)

1

(visible delay)(visible delay)

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY var IS
PORT (a, b : IN STD_LOGIC;

y : OUT STD_LOGIC);
END var;
ARCHITECTURE logic OF var IS
BEGIN
PROCESS (a, b)
VARIABLE c : STD_LOGIC;;
BEGIN

c := a AND b;
y <= c;

END PROCESS;
END logic;

a,b changes
a = 1, b = 1

y
executed

y updated
(y=0)

c executed and
updated (c=1)

Copyright © 2005 Altera Corporation
73

Variable Declarations
 Variables Are Declared Inside a Process
 Variables Are Represented By: :=
 Variable Declaration

VARIABLE <Name> : <DATA_TYPE> := <Value>;
Variable Temp : Std_logic_vector (7 Downto 0);

 Variable Assignments Are Updated Immediately
 Do Not Incur a Delay

No Delay

Temporary Storage

Copyright © 2005 Altera Corporation
74

Assigning Values to Variables

 All Bits:
Temp := “10101010”;
Temp := X”aa” ; (1076-1993)

 Single Bit:
Temp(7) := ‘1’;

 Bit-slicing:
Temp (7 downto 4) := “1010”;

 Single-bit: Single-quote (‘)
 Multi-bit: Double-quote (“)

VARIABLE temp : STD_LOGIC_VECTOR (7 downto 0);

Copyright © 2005 Altera Corporation
75

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY var IS
PORT (a, b : IN STD_LOGIC;

y : OUT STD_LOGIC);
END var;

ARCHITECTURE logic OF var IS
BEGIN

PROCESS (a, b)
VARIABLE c : STD_LOGIC;
BEGIN
c := a AND b;

y <= c;

END PROCESS;
END logic;

Variable Assignment

Variable Declaration

Variable Assignment

Variable is Assigned to a
Signal to Synthesize to a
Piece of Hardware

Copyright © 2005 Altera Corporation
76

Use of a Variable

val Is a Variable That Is Updated
at the Instant an Assignment
Is Made to It

Therefore, the Updated Value
of val Is Available for the
CASE Statement

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
ENTITY cmb_var IS
PORT(i0, i1, a : IN BIT;

q : OUT BIT);
END cmb_var;
ARCHITECTURE logic OF cmb_var IS
BEGIN

PROCESS(i0, i1, a)
VARIABLE val : INTEGER RANGE 0 TO 1;
BEGIN

val := 0;
IF (a = '0') THEN

val := val;
ELSE

val := val + 1;
END IF;
CASE val IS

WHEN 0 =>
q <= i0;

WHEN 1 =>
q <= i1;

END CASE;
END PROCESS;

END logic;

Copyright © 2005 Altera Corporation
77

Signal and Variable Scope
ARCHITECTURE

label1: PROCESS
{VARIABLE Declarations}

label2: PROCESS
{VARIABLE Declarations}

{SIGNAL Declarations}
Declared Outside of the
Process Statements
(Globally Visible to All
Process Statements)

Declared Inside the
Process Statements
(Locally Visible to the
Process Statements)

Copyright © 2005 Altera Corporation
78

Review - Signals vs. Variables

Represent Circuit
Interconnect

Global Scope
(Communicate Between

PROCESSES)
Updated at End of
Process Statement
(New Value Not Available)

SIGNALS (<=)

UTILITY

SCOPE

BEHAVIOR

VARIABLES (:=)

Represent Local
Storage

Local Scope
(Inside PROCESS)

Updated Immediately
(New Value Available)

assignee <= assignment assignee := assignmentASSIGN

Copyright © 2005 Altera Corporation
79

Sequential Statements
Sequential Statements

 IF-THEN Statement
CASE Statement

Copyright © 2005 Altera Corporation
80

If-then Statements

IF <condition1> THEN
{sequence of statement(s)}

ELSIF <condition2> THEN
{sequence of statement(s)}

.

.
ELSE

{sequence of statement(s)}
END IF;

 Format:  Example:

c

b
selb a

sela

q

PROCESS(sela, selb, a, b, c)
BEGIN

IF sela=‘1’ THEN
q <= a;

ELSIF selb=‘1’ THEN
q <= b;

ELSE
q <= c;

END IF;
END PROCESS;

Copyright © 2005 Altera Corporation
81

If-then Statements
 Conditions Are Evaluated in Order From Top to

Bottom
 Prioritization

 The First Condition That Is True Causes the
Corresponding Sequence of Statements to Be
Executed

 If All Conditions Are False, Then the Sequence of
Statements Associated With the “ELSE” Clause
Is Evaluated

Copyright © 2005 Altera Corporation
82

If-then StatementsIf-then Statements

Similar to Conditional Signal Assignment

PROCESS(sela, selb, a, b, c)
BEGIN

IF sela=‘1’ THEN
q <= a;

ELSIF selb=‘1’ THEN
q <= b;

ELSE
q <= c;

END IF;
END PROCESS;

q <= a WHEN sela = ‘1’ ELSE
b WHEN selb = ‘1’ ELSE
c;

c

b
selb a

sela

q

Implied Process Explicit Process

Copyright © 2005 Altera Corporation
83

Case Statement

CASE {expression} IS
WHEN <condition1> =>

{sequence of statements}
WHEN <condition2> =>

{sequence of statements}

.

.
WHEN OTHERS => -- (optional)

{sequence of statements}
END CASE;

 Format:  Example:

a

d
sel

2

b
c

q

PROCESS(sel, a, b, c, d)
BEGIN

CASE sel IS
WHEN “00” =>

q <= a;
WHEN “01” =>

q <= b;
WHEN “10” =>

q <= c;
WHEN OTHERS =>

q <= d;
END CASE;

END PROCESS;

Copyright © 2005 Altera Corporation
84

Case Statement
Conditions Are Evaluated at Once

No Prioritization
All Possible Conditions Must Be

Considered
WHEN OTHERS Clause Evaluates All

Other Possible Conditions That Are Not
Specifically Stated

Copyright © 2005 Altera Corporation
85

Case StatementCase Statement
Similar to Selected Signal Assignment

PROCESS(sel, a, b, c, d)
BEGIN

CASE sel IS
WHEN “00” =>

q <= a;
WHEN “01” =>

q <= b;
WHEN “10” =>

q <= c;
WHEN OTHERS =>

q <= d;
END CASE;

END PROCESS;

WITH sel SELECT
q <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;

a

d
sel

2

b
c

q

Implied Process Explicit Process

Copyright © 2005 Altera Corporation
86

Understanding VHDL
and

Logic Synthesis

Copyright © 2005 Altera Corporation
87

Two Types of Process Statements

a

b

sel

c

CLRN
ENA

D Qd

clk

clr

q

Sensitivity List Includes All Inputs Used
in the Combinatorial Logic

Sensitivity List Does Not Include the d Input,
Only the Clock or/and Control Signals

• Sequential Process
– Sensitive to a Clock or/and

Control Signals
• Example

PROCESS(clr, clk)

• Combinatorial Process
– Sensitive to All Inputs Used In

the Combinatorial Logic
• Example

PROCESS(a, b, sel)

Copyright © 2005 Altera Corporation
88

Latch

Sensitivity List Includes Both Inputs

data

gate

q
Transparent

Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY latch1 IS
PORT (data : IN std_logic;

gate : IN std_logic;
q : OUT std_logic

);
END latch1;

ARCHITECTURE behavior OF latch1 IS
BEGIN

label_1: PROCESS (data, gate)
BEGIN
IF gate = '1' THEN

q <= data;
END IF;

END PROCESS;

END behavior;

What Happens if Gate = ‘0’?
 Implicit Memory

Copyright © 2005 Altera Corporation
89

DFF - Clk’event and Clk=‘1’

clk’event and clk=‘1’
– clk Is the Signal Name (Any Name)
– ‘event Is a VHDL Attribute,

Specifying That There Needs
to Be a Change in Signal Value

– clk=‘1’ Means Positive-Edge
Triggered

CLRN
ENA

D Qd

clk

q

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY dff_a IS
PORT (d : in std_logic;

clk : in std_logic;
q : out std_logic

);
END dff_a;

ARCHITECTURE behavior OF dff_a IS
BEGIN
PROCESS (clk)

BEGIN
IF clk'event and clk = '1' THEN

q <= d;
END IF;

END PROCESS;
END behavior;

Copyright © 2005 Altera Corporation
90

DFF - Rising_edge

rising_edge
– IEEE Function That is Defined in
the std_logic_1164 Package
– Specifies That the Signal Value

must be 0 to 1
– X, Z to 1 Transition Is Not Allowed

CLRN
ENA

D Qd

clk

q

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY dff_b IS
PORT (d : in std_logic;

clk : in std_logic;
q : out std_logic

);
END dff_b;

ARCHITECTURE behavior OF dff_b IS
BEGIN
PROCESS(clk)

BEGIN
IF rising_edge(clk) THEN

q <= d;
END IF;

END PROCESS;
END behavior;

Copyright © 2005 Altera Corporation

Rising_edge vs Wait clk’eventRising_edge vs Wait clk’event
There is a small difference between them.

please see the snippet from the library
std_logic_1164

 FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN IS
BEGIN

RETURN (s'EVENT AND (To_X01(s) = '1') AND
(To_X01(s'LAST_VALUE) = '0'));

END;
 FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN IS

BEGIN
RETURN (s'EVENT AND (To_X01(s) = '0') AND

(To_X01(s'LAST_VALUE) = '1'));
END;

 This function checks the rising or falling edge of the clock as well as the
previous value of the clock.

 When you write (clk'event and clk='1') you check only the rising or falling
edge not the previous value of the signal.

91

Copyright © 2005 Altera Corporation
92

DFF With Asynchronous Clear

– This is How to Implement Asynchronous
Control Signals for the Register

– Note: This IF-THEN Statement
Is Outside the IF-THEN Statement
that Checks the Condition rising_edge

– Therefore, clr=‘1’ Does Not Depend
on the Clock

CLRN
ENA

D Qd

clk

clr

q

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;

ENTITY dff_clr IS
PORT (clr : in bit;

d, clk : in std_logic;
q : out std_logic
);

END dff_clr;

ARCHITECTURE behavior OF dff_clr IS
BEGIN
PROCESS(clk, clr)

BEGIN

IF clr = '0' THEN
q <= '0';

ELSIF rising_edge(clk) THEN
q <= d;

END IF;
END PROCESS;
END behavior;

Copyright © 2005 Altera Corporation
93

How Many Registers?
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY reg1 IS

PORT (d : in STD_LOGIC;
clk : in STD_LOGIC;
q : out STD_LOGIC);

END reg1;

ARCHITECTURE reg1 OF reg1 IS
SIGNAL a, b : STD_LOGIC;
BEGIN

PROCESS (clk)
BEGIN

IF rising_edge(clk) THEN
a <= d;
b <= a;
q <= b;

END IF;
END PROCESS;

END reg1;

Copyright © 2005 Altera Corporation
94

How Many Registers?

CLRN
ENA

D Q

clk

qb

CLRN
ENA

D Q

clk

CLRN
ENA

D Qd

clk

a

Signal Assignments Inside the IF-THEN
Statement That Checks the Clock
Condition Infer Registers

Copyright © 2005 Altera Corporation
95

How Many Registers?

Signal
Assignment
Moved

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY reg1 IS

PORT (d : in STD_LOGIC;
clk : in STD_LOGIC;
q : out STD_LOGIC);

END reg1;
ARCHITECTURE reg1 OF reg1 IS
SIGNAL a, b : STD_LOGIC;
BEGIN

PROCESS (clk)
BEGIN

IF rising_edge(clk) THEN
a <= d;
b <= a;

END IF;
END PROCESS;
q <= b;

END reg1;

Copyright © 2005 Altera Corporation
96

How Many Registers?
B to Q Assignment Is No Longer Edge-

sensitive Because It Is Not Inside the If-
then Statement That Checks the Clock
Condition

q

CLRN
ENA

D Q

clk

CLRN
ENA

D Qd

clk

a

Copyright © 2005 Altera Corporation
97

How Many Registers?

Signals Changed to Variables

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY reg1 IS

PORT (d : in STD_LOGIC;
clk : in STD_LOGIC;
q : out STD_LOGIC);

END reg1;

ARCHITECTURE reg1 OF reg1 IS
BEGIN

PROCESS (clk)
VARIABLE a, b : STD_LOGIC;
BEGIN

IF rising_edge(clk) THEN
a := d;
b := a;
q <= b;

END IF;
END PROCESS;

END reg1;

Copyright © 2005 Altera Corporation
98

How Many Registers?
Variable Assignments Are Updated

Immediately
Signal Assignments Are Updated on Clock

Edge

CLRN
ENA

D Qd

clk

q

Copyright © 2005 Altera Corporation
99

Variable Assignments in Sequential Logic

 Variable Assignments Inside the IF-THEN Statement, That Checks
the Clock Condition, Usually Don’t Infer Registers
 Exception: If the Variable Is on the Right Side of the Equation in

a Clocked Process Prior to Being Assigned a Value, the Variable
Will Infer a Register(s)

 Variable Assignments Are Temporary Storage and Have No
Hardware Intent

 Variable Assignments Can Be Used in Expressions to Immediately
Update a Value
 Then the Variable Can Be Assigned to a Signal

Copyright © 2005 Altera Corporation
100

Example - Counter Using a Variable

 Counters Are Accumulators That
Always Add a ‘1’ or Subtract a ‘1’

 This Example Takes 17 LEs

Arithmetic Expression Assigned to a
Variable

Variable Assigned to a Signal

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_unsigned.all;
ENTITY count_a IS
PORT (clk, rst, updn : in std_logic;

q : out std_logic_vector(15 downto 0));
END count_a;
ARCHITECTURE logic OF count_a IS
BEGIN
PROCESS(rst, clk)
VARIABLE tmp_q : std_logic_vector(15 downto 0);
BEGIN

IF rst = '0' THEN
tmp_q := (others => '0');

ELSIF rising_edge(clk) THEN
IF updn = '1' THEN

tmp_q := tmp_q + 1;
ELSE

tmp_q := tmp_q - 1;
END IF;

END IF;
q <= tmp_q;

END PROCESS;
END logic;

Copyright © 2005 Altera Corporation

Implicit memoryImplicit memory
 Signals in VHDL have a current state and a future

value
 In a process, if the future value of a signal cannot

be determined, a latch will be synthesized to
preserve its current state

 Advantages:
 Simplifies the creation of memory in logic design

 Disadvantages:
 Can generate unwanted latches, e.g., when all of the

options in a conditional sequential statement are not
specified

101

Copyright © 2005 Altera Corporation

ARCHITECTURE archcomplete OF
complete IS

BEGIN
PROCESS (a, b)
BEGIN

IF a = '1' THEN c <= b;
ELSE c <= '0';
END IF;

END PROCESS;
END archcomplete;

b c
a

Implicit memory: Example of
complete specification
Implicit memory: Example of
complete specification

The conditional statement is fully specified,
and this causes the process to synthesize
to a single gate

102

Copyright © 2005 Altera Corporation

Implicit memory: Example of
incomplete specification
Implicit memory: Example of
incomplete specification

Here, the incomplete specification of the
IF...THEN... statement causes a latch to be
synthesized to store the previous state of ‘c’

ARCHITECTURE archincomplete OF
incomplete IS

BEGIN
PROCESS (a, b)
BEGIN

IF a = '1' THEN c <= b;
END IF;

END PROCESS;
END archincomplete;

a
c

b

103

Copyright © 2005 Altera Corporation

The rules to avoid implicit
memory
The rules to avoid implicit
memory
To avoid the generation of unexpected

latches
 Always terminate an IF...THEN...ELSE... statement with an ELSE

clause
 Cover all alternatives in a CASE statement

define every alternative individually, or
 terminate the CASE statement with a WHEN OTHERS... clause,

e.g.,
CASE decode IS

WHEN b"100" => key <= first;
WHEN b"010" => key <= second;

WHEN b"001" => key <= third;
WHEN OTHERS => key <= none;

END CASE;

104

Copyright © 2005 Altera Corporation
105

Model
Application

Copyright © 2005 Altera Corporation

State machinesState machines
Moore Machines

 A finite state machine in which the outputs
change due to a change of state

Mealy Machines
 A finite state machine in which the outputs can

change asynchronously i.e., an input can
cause an output to change immediately

Copyright © 2005 Altera Corporation
107

Enumerated Data Type
Recall the Built-in Data Types:

Bit
Std_logic
 Integer

What About User-defined Data Types?:
Enumerated Data Type:

TYPE <your_data_type> IS
(items or values for your data type separated by commas)

Copyright © 2005 Altera Corporation
108

Writing VHDL Code for FSM
State Machine States Must Be an

Enumerated Data Type:
TYPE State_type IS (Idle, Tap1, Tap2, Tap3, Tap4);

Object Which Stores the Value of the
Current State Must Be a Signal of the
User-defined Type:

SIGNAL Filter : State_type;

Copyright © 2005 Altera Corporation
109

Writing VHDL Code for FSM
One process only

 Handles both state transitions and outputs

 Two processes
 A synchronous process for updating the state

register
 A combinational process for conditionally deriving

the next machine state and updating the outputs

Copyright © 2005 Altera Corporation

Moore machinesMoore machines
Outputs may change only with a change

of state
 Automatic State Assignment
the compiler chooses the state encoding
outputs must be decoded from the state registers

– can be a combinatorial decode
– can be a registered decode

 Specific State Assignment
you choose the state encoding

– outputs may be encoded inside the state registers

110

Copyright © 2005 Altera Corporation

Example: A wait state generatorExample: A wait state generator
State diagram:

111

RESET
(async)

IDLE

0 , 0

REQ

ACK

1 , 0

RETRY

0 , 1

REQ

PWAIT

PWAIT

 Inputs: REQ, PWAIT + CLOCK + RESET
 Outputs: ACK_OUT, RETRY_OUT
 States: IDLE, RETRY, ACK

Copyright © 2005 Altera Corporation

Example: The entity declarationExample: The entity declaration
The entity declaration remains the same

for each of the following example
implementations (except for the entity
name)
e.g.,

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY moore1 IS PORT (

clock, reset: IN std_logic;
req, pwait: IN std_logic;
retry_out, ack_out: OUT std_logic);

END moore1;

112

Copyright © 2005 Altera Corporation

Inputs
Next
State
Logic

State
Registers

Output
Logic

Outputs

Present State

Next State

tco

Moore state machine
implementations (1)
Moore state machine
implementations (1)
 Automatic State Assignment
 Outputs decoded from state bits COMBINATORIALLY

 combinatorial output logic is in series with state
registers

 outputs are a function of the present state only
 time from clock to output (tco) is long

113

Copyright © 2005 Altera Corporation

Example: Solution 1Example: Solution 1
Combinatorial outputs

decoded from the state bits
ARCHITECTURE archmoore1 OF moore1 IS

TYPE fsm_states IS (idle, retry, ack);
SIGNAL pres_state : fsm_states;

BEGIN
fsm: PROCESS (clock, reset)
BEGIN

IF reset = '1' THEN
pres_state <= idle; -- asynchronous reset

ELSIF clock'EVENT AND clock = '1' THEN
CASE pres_state IS

WHEN idle => IF req = '0' THEN pres_state <= retry;
ELSE pres_state <= idle;

END IF;

WHEN retry => IF pwait='1' THEN pres_state <= ack;
ELSE pres_state <= retry;

END IF;

Inputs Logic State
Registers

Output
Logic

Outputs

Present state

114

Copyright © 2005 Altera Corporation

Example: Solution 1
(contd.)
Example: Solution 1
(contd.)

WHEN ack => pres_state <= idle;
WHEN OTHERS => pres_state <= idle;

END CASE;
END IF;

END PROCESS fsm;

retry_out <= '1' WHEN (pres_state = retry) ELSE '0';
ack_out <= '1' WHEN (pres_state = ack) ELSE '0';

END archmoore1;

115

Inputs Logic State
Registers

Output
Logic

Outputs

Present state

Copyright © 2005 Altera Corporation tco

Moore state machine implementations (2)Moore state machine implementations (2)
 Outputs decoded from state bits using

REGISTERS
 registered output logic is in parallel with state

registers
 outputs are a function of the previous state and the

inputs
 tco is shorter, but you need more registers

Outputs

State
Registers

Output
Logic

Output
Registers

Inputs

Next
State
Logic

Present State

116

Copyright © 2005 Altera Corporation

Example: Solution 2Example: Solution 2
Registered outputs decoded from the state

bits
ARCHITECTURE archmoore2 OF moore2 IS
TYPE fsm_states IS (idle, retry, ack);
SIGNAL pres_state: fsm_states;
BEGIN
fsm: PROCESS (clock, reset)
BEGIN
IF reset = '1' THEN

pres_state <= idle;
retry_out <= '0';
ack_out <= '0';

ELSIF clock'EVENT AND clock = '1' THEN
retry_out <= '0'; -- a default assignment
CASE pres_state IS
WHEN idle => IF req = '0' THEN pres_state <= retry;

retry_out <= '1';
ack_out <= '0';

ELSE pres_state <= idle;
ack_out <= '0';

END IF;

Outputs

State
Registers

Output
Logic

Ouput
Registers

Inputs

Next
State
Logic

Present State

117

Copyright © 2005 Altera Corporation

Example: Solution 2 (contd.)Example: Solution 2 (contd.)
WHEN retry => IF pwait = '1' THEN pres_state <= ack;

ack_out <= '1';
ELSE pres_state <= retry;

retry_out <= '1';
ack_out <= '0';

END IF;

WHEN ack => pres_state <= idle;
ack_out <= '0';

WHEN OTHERS => pres_state <= idle;
ack_out <= '0'; -- note must define what

-- happens to ‘ack_out’
END CASE; -- here or a latch will

END IF; -- be synthesized to
END PROCESS fsm; -- preserve it’s current state
END archmoore2;

118

Copyright © 2005 Altera Corporation

State Output 1 Output 2 State Encoding
s1 0 0 00

s2 1 0 01
s3 0 1 10

Moore State Machine Implementations (3)Moore State Machine Implementations (3)

Outputs encoded within the state bits
Example:

Note: Both bits of the state encoding are used as outputs

State
Registers

Present State
(Outputs)

Inputs Logic

119

Copyright © 2005 Altera Corporation

Example: Solution 3Example: Solution 3
Outputs encoded within the state bits

ARCHITECTURE archmoore3 OF moore3 IS
SIGNAL pres_state: std_logic_vector(1 DOWNTO 0);
CONSTANT idle: std_logic_vector(1 DOWNTO 0) := "00";
CONSTANT retry: std_logic_vector(1 DOWNTO 0) := "01";
CONSTANT ack: std_logic_vector(1 DOWNTO 0) := "10";

BEGIN
fsm: PROCESS (clock, reset)
BEGIN
IF reset = '1' THEN

pres_state <= idle;
ELSIF clock'EVENT AND clock = '1' THEN

CASE pres_state IS
WHEN idle => IF req = '0' THEN pres_state <= retry;

ELSE pres_state <= idle;
END IF;

State
Registers

Present State
(Outputs)

Inputs Logic

120

Copyright © 2005 Altera Corporation

Example: Solution 3 (contd.)Example: Solution 3 (contd.)

WHEN retry => IF pwait = '1' THEN pres_state <= ack;
ELSE pres_state <= retry;

END IF;
WHEN ack => pres_state <= idle;
WHEN OTHERS => pres_state <= idle;

END CASE;
END IF;

END PROCESS fsm;

retry_out <= pres_state(0);
ack_out <= pres_state(1);

END archmoore3;

State
RegistersInputs Logic

121

Present State
(Outputs)

Copyright © 2005 Altera Corporation

Moore machines: SummaryMoore machines: Summary
Outputs decoded from the state bits

flexibility during the design process
using enumerated types allows automatic state

assignment during compilation

Outputs encoded within the state bits
manual state assignment using constants
the state registers and the outputs are merged
reduces the number of registers
but, may require more product terms

One-Hot encoding
reduces the number of product terms
high speed operation
but, uses more registers

122

Copyright © 2005 Altera Corporation

Mealy machinesMealy machines
Outputs may change with a change of state

OR with a change of inputs
 Mealy outputs are non-registered because

they are functions of the present inputs

Inputs

State
Registers

Logic Outputs

123

Present State

Copyright © 2005 Altera Corporation

Example: The Wait state generatorExample: The Wait state generator
State diagram:

124

PWAIT / 0

RESET
(async)

IDLE RETRY
REQ / 0

PWAIT / 0

REQ / 0

ENABLE / 1

 Inputs: REQ, PWAIT, ENABLE + CLOCK + RESET
 Outputs: RETRY_OUT
 States: IDLE, RETRY

Copyright © 2005 Altera Corporation

Example: Mealy machine solutionExample: Mealy machine solution
ARCHITECTURE archmealy1 OF mealy1 IS
TYPE fsm_states IS (idle, retry);
SIGNAL pres_state: fsm_states;

BEGIN
fsm: PROCESS (clock, reset)
BEGIN
IF reset = '1' THEN

pres_state <= idle;
ELSIF clock'EVENT AND clock = '1' THEN

CASE pres_state IS
WHEN idle => IF req = '0' THEN pres_state <= retry;

ELSE pres_state <= idle;
END IF;

WHEN retry => IF pwait = '1' THEN pres_state <= idle;
ELSE pres_state <= retry;

END IF;
WHEN OTHERS => pres_state <= idle;

END CASE;
END IF;

END PROCESS fsm;
retry_out <= '1' WHEN (pres_state = retry AND enable='0') ELSE '0';

END archmealy1;

125

Copyright © 2005 Altera Corporation
126

Designing
Hierarchically

Copyright © 2005 Altera Corporation
127

Recall - Structural Modeling

input1

inputn

output1

outputn

Higher-Level Component

Lower-Level
Component1

Lower-Level
Component1

 Functionality and Structure of the Circuit
 Call Out the Specific Hardware, Lower-Level Components
 For the Purpose of Synthesis

Copyright © 2005 Altera Corporation
128

Design Hierarchically - Multiple Design Files

 VHDL Hierarchical Design Requires Component
Declarations and Component Instantiations

top.vhd
entity-architecture “top”
component “mid_a”
component “mid_b”

mid_a.vhd
entity-architecture “mid_a”
component “bottom_a”

mid_b.vhd
entity-architecture “mid_b”
component “bottom_a”
component “bottom_b”

bottom_a.vhd
entity-architecture “bottom_a”

bottom_b.vhd
entity-architecture “bottom_b”

Copyright © 2005 Altera Corporation
129

Benefits of Hierarchical Designing

Designing Hierarchically
 In a Design Group, Each Designer Can Create

Separate Functions (Components) in Separate
Design Files

 These Components Can Be Shared by Other
Designers or Can Be Used for Future Projects

 Therefore, Designing Hierarchically Can Make
Designs More Modular and Portable

 Designing Hierarchically Can Also Allow Easier and
Faster Alternative Implementations
– Example: Try Different Counter Implementations by

Replacing Component Declaration and Component
Instantiation

Copyright © 2005 Altera Corporation
130

 Component Declaration - Used to Declare the Port Types and the
Data Types of the Ports for a Lower-level Design

COMPONENT <Lower-level_design_name> IS
PORT (<Port_name> : <Port_type> <Data_type>;

.

.
<Port_name> : <Port_type> <Data_type>);

END COMPONENT;
 Component Instantiation - Used to Map the Ports of a Lower-level

Design to That of the Current-level Design
<Instance_name> : <Lower-level_design_name>
PORT MAP(<lower-level_port_name> => <Current_level_port_name>,

…,<Lower-level_port_name> => <Current_level_port_name>);

Component Declaration and Instantiation

Copyright © 2005 Altera Corporation

Package and Component Declarations
 When you have created a working entity/architecture

pair, you need to add a component declaration to
make it a re-usable COMPONENT

 COMPONENTS need to be stored in PACKAGES, so
you need to write a package declaration to store all
your components

 When you compile your package with no errors, the
components will be stored in the WORK “library”

 WORK is the current working directory where
everything YOU compile gets stored. Because it is the
current directory, you do NOT need to add it (even if a
VHDL Design File should contain one Library Clause
for each Use Clause.:

LIBRARY WORK; -- not required

131

Copyright © 2005 Altera Corporation

COMPONENT: exampleCOMPONENT: example

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY muxcomp IS PORT (

a1,b1,a2,b2: IN std_logic_vector(1 DOWNTO 0);
s1,s2: IN std_logic;
y: OUT std_logic);

END muxcomp;

ARCHITECTURE archmuxcomp OF muxcomp IS
SIGNAL out1,out2: std_logic_vector(1 DOWNTO 0);
BEGIN

out1 <= a1 WHEN s1 = '1' ELSE b1;
out2 <= a2 WHEN s2 = '1' ELSE b2;
y <= '1' WHEN out1 = out2 ELSE '0';

END archmuxcomp;

s1

a1

b1

s2

a2

b2

MUX

MUX

=

2

2

2

2

2

2

y

muxcomp

out1

out2

Without
COMPONENT!

132

Copyright © 2005 Altera Corporation

COMPONENT: example - Top-LevelCOMPONENT: example - Top-Level

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY muxcomp IS PORT (

a1,b1,a2,b2: IN std_logic_vector(1 DOWNTO 0);
s1,s2: IN std_logic;
y: OUT std_logic);

END muxcomp;
...

s1

a1

b1

s2

a2

b2

2

2

2

2

y

muxcomp
Modular solution

Declaration Top-Level Entity
MUX

MUX

COMP

?
 The Top-Level Entity

 Has the highest rank in the
hierarchy

 Contains and connects all the sub-
blocks

 Furnishes the path towards pins

 Blocks
 Library
 User-defined

133

Copyright © 2005 Altera Corporation

COMPONENT: example - definitionCOMPONENT: example - definition
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY mux2to1 IS PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END mux2to1;

ARCHITECTURE archmux2to1 OF mux2to1 IS
BEGIN

y <= a WHEN s = '1' ELSE b;
END archmux2to1;

=

2

2

a

b
y

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY comp IS PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
y: OUT std_logic);

END comp;

ARCHITECTURE archcomp OF comp IS
BEGIN

y <= '1' WHEN a = b ELSE '0';
END archcomp;

2

2

a

b
y

comp

s

a

b
MUX

2
2

y2

2

2
a
b

mux2to1s
y

2

134

Copyright © 2005 Altera Corporation

COMPONENT: example - declarationCOMPONENT: example - declaration

2

2

comp

...

ARCHITECTURE archmuxcomp OF muxcomp IS

COMPONENT mux2to1 PORT (
a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END COMPONENT;

COMPONENT comp PORT (
a,b: IN std_logic_vector(1 DOWNTO 0);
y: OUT std_logic);

END COMPONENT;

...

 A COMPONENT must be declared before it can be used
in an architecture (as function prototypes in C…)

ENTITY mux2to1 IS PORT (
a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END mux2to1;

ENTITY comp IS PORT (
a,b: IN std_logic_vector(1 DOWNTO 0);
y: OUT std_logic);

END comp;

 COMPONENT declaration seems like its ENTITY

2

2

mux2to1
2

135

Copyright © 2005 Altera Corporation

COMPONENT: example - instanceCOMPONENT: example - instance
 A declared and defined Component, can be instantiated

several times within an Architecture
 Each instance has a univocal identifier

mux1: mux2to1 PORT MAP (...);
mux2: mux2to1 PORT MAP (...);
comp: comp PORT MAP (...);

2

2

comp

s1

a1

b1

s2

a2

b2

2

2

2

2

y

muxcomp

mux1

mux2

comp

2

2

comp

 univocal identifiers

2

2

mux2to1
2

2

2

mux2to1
2

2

2

mux2to1
2

136

Copyright © 2005 Altera Corporation

COMPONENT: example - PORT MAPCOMPONENT: example - PORT MAP

 Components must be connected by means of PORT MAP

...

SIGNAL out1,out2: std_logic_vector(1 DOWNTO 0);

BEGIN
mux1: mux2to1 PORT MAP (a1,b1,s1,out1);
mux2: mux2to1 PORT MAP (a2,b2,s2,out2);
comp: comp PORT MAP (out1,out2,y);

END archmuxcomp;

s1

a1

b1

s2

a2

b2

2

2

2

2

y

muxcomp

2

2
a
b

mux2to1s
y

2

mux1

2

2
a
b

mux2to1s
y

2

mux2

2

2

a

b
y

comp
comp

 Component Ports are connectyed with main Entity ports...
 ... Or to other componments ports by mean sof signals

Pay attention to ports positions
within the PORT MAP

out1

out2

137

Copyright © 2005 Altera Corporation

COMPONENT: example - solutionCOMPONENT: example - solution
 A modular project may be made of two files:

 A File including component definitions
 A Top-File with Top-Level Entity/Architecture and

components definition/declaration
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY mux2to1 IS PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END mux2to1;
ARCHITECTURE archmux2to1 OF mux2to1 IS
BEGIN

y <= a WHEN s = '1' ELSE b;
END archmux2to1;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY comp IS PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
y: OUT std_logic);

END comp;
ARCHITECTURE archcomp OF comp IS
BEGIN

y <= '1' WHEN a = b ELSE '0';
END archcomp;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY muxcomp IS PORT (

a1,b1,a2,b2: IN std_logic_vector(1 DOWNTO 0);
s1,s2: IN std_logic;
y: OUT std_logic);

END muxcomp;
ARCHITECTURE archmuxcomp OF muxcomp IS
COMPONENT mux2to1 PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END COMPONENT;
COMPONENT comp PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
y: OUT std_logic);

END COMPONENT;
SIGNAL out1,out2: std_logic_vector(1 DOWNTO 0);
BEGIN

mux1: mux2to1 PORT MAP (a1,b1,s1,out1);
mux2: mux2to1 PORT MAP (a2,b2,s2,out2);
comp: comp PORT MAP (out1,out2,y);

END archmuxcomp;

138

Copyright © 2005 Altera Corporation

PORT MAPPORT MAP
 In the previous example PORT MAP assignements were

positional

ENTITY mux2to1 IS PORT (
a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END mux2to1;

2

2
a
b

mux2to1s
y

2

mux1

mux1: mux2to1 PORT MAP (a1,b1,s1,out1);

s1
a1
b1

2

muxcomp

2

out12

139

Copyright © 2005 Altera Corporation

PORT MAPPORT MAP
 Named association explicitly identifies the connection

between port identifiers and port map identifiers
ENTITY mux2to1 IS PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END mux2to1;

2

2
a
b

mux2to1s
y

2

mux1

mux1: mux2to1 PORT MAP(s=>s1,
a=>a1,
b=>b1,
y=>out1);

s1
a1
b1

2

muxcomp

2

out12

Ports belonging to "mux2to1"

Ports and Signals belonging
to "muxcomp"

140

Copyright © 2005 Altera Corporation

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
PACKAGE mypkg IS

COMPONENT mux2to1 PORT (
a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END COMPONENT;

COMPONENT comp PORT (
a,b: IN std_logic_vector(1 DOWNTO 0);
y: OUT std_logic);

END COMPONENT;

END mypkg;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY mux2to1 IS PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END mux2to1;
ARCHITECTURE archmux2to1 OF mux2to1 IS
BEGIN

y <= a WHEN s = '1' ELSE b;
END archmux2to1;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY comp IS PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
y: OUT std_logic);

END comp;
ARCHITECTURE archcomp OF comp IS
BEGIN

y <= '1' WHEN a = b ELSE '0';
END archcomp;

 At the beginning or at the end of the file containing the
components definition, also the PACKAGE is definied,
including COMPONENTs declarations

141

PACKAGE: example

Copyright © 2005 Altera Corporation

 In order to use COMPONENTs, it is no more needed to declare each
one of them, but only to include (declaration) the PACKAGE in which
they are stored

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY muxcomp IS PORT (

a1,b1,a2,b2: IN std_logic_vector(1 DOWNTO 0);
s1,s2: IN std_logic;
y: OUT std_logic);

END muxcomp;
ARCHITECTURE archmuxcomp OF muxcomp IS
COMPONENT mux2to1 PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(1 DOWNTO 0));

END COMPONENT;
COMPONENT comp PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
y: OUT std_logic);

END COMPONENT;
SIGNAL out1,out2: std_logic_vector(1 DOWNTO 0);
BEGIN

mux1: mux2to1 PORT MAP (a1,b1,s1,out1);
mux2: mux2to1 PORT MAP (a2,b2,s2,out2);
comp: comp PORT MAP (out1,out2,y);

END archmuxcomp;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY muxcomp IS PORT (

a1,b1,a2,b2: IN std_logic_vector(1 DOWNTO 0);
s1,s2: IN std_logic;
y: OUT std_logic);

END muxcomp;

USE work.mypkg.ALL;
ARCHITECTURE archmuxcomp OF muxcomp IS
SIGNAL out1,out2: std_logic_vector(1 DOWNTO 0);

BEGIN
mux1: mux2to1 PORT MAP (a1,b1,s1,out1);
mux2: mux2to1 PORT MAP (a2,b2,s2,out2);
comp: comp PORT MAP (out1,out2,y);

END archmuxcomp;

Without PACKAGE With PACKAGE

All the componentts...
... In the package

"mypkg"... ... In the library
"work"

142

PACKAGE: example - declaration

Copyright © 2005 Altera Corporation

GENERICGENERIC
 Allows to define a “generic” components
 Example: PORT dimension, counter direction,...

s

a

b
MUX

N
N

yN

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY mux2to1 IS

GENERIC (N: integer:=8);
PORT (

a,b: IN std_logic_vector(N-1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(N-1 DOWNTO 0));

END mux2to1;

ARCHITECTURE archmux2to1 OF mux2to1 IS
BEGIN

y <= a WHEN s = '1' ELSE b;
END archmux2to1;

Parameter

Parameter
Type

Default
value

Parametrize
d Vector

143

Copyright © 2005 Altera Corporation

GENERIC - mappingGENERIC - mapping

 Also GENERIC, as PORT, have to be mapped
 Named and positional notations are allowed

ARCHITECTURE archmuxcomp OF muxcomp IS
COMPONENT mux2to1

GENERIC (N: integer:=8);
PORT (
a,b: IN std_logic_vector(N-1 DOWNTO 0);
s: IN std_logic;
y: OUT std_logic_vector(N-1 DOWNTO 0));

END COMPONENT;
COMPONENT comp PORT (

a,b: IN std_logic_vector(1 DOWNTO 0);
y: OUT std_logic);

END COMPONENT;
SIGNAL out1,out2: std_logic_vector(1 DOWNTO 0);
BEGIN

mux1: mux2to1 GENERIC MAP (2)
PORT MAP (a1,b1,s1,out1);

mux2: mux2to1 GENERIC MAP (2)
PORT MAP (a2,b2,s2,out2);

comp: comp PORT MAP (out1,out2,y);
END archmuxcomp;

Component declaration

Instances

Default value is
overwritten!

144

